
Peyrin Kao
Fall 2023

CS 161
Computer Security Discussion 3

Question 1 C Memory Defenses
Mark the following statements as True or False and justify your solution. Please feel free to discuss
with students around you.

Q1.1 Stack canaries completely prevent a buffer overflow from overwriting the return instruction pointer.

Solution:

False, stack canaries can be defeated if they are revealed by information leakage, or if there
is not sufficient entropy, in which case an attacker can guess the value. Also, format string
vulnerabilities can simply skip past the canary.

Q1.2 A format-string vulnerability can allow an attacker to overwrite values below the stack pointer.

Solution:

True, format string vulnerabilities can write to arbitrary addresses by using a ‘%n’ together
with a pointer.

Q1.3 ASLR, stack canaries, and NX bits all combined are insufficient to prevent exploitation of all buffer
overflow attacks.

Solution:

True, all of these protections can be overcome. The only way to prevent buffer overflow attacks
is by using a memory-safe language.

Short answer!

Q1.4 What vulnerability would arise if the stack canary was between the return address and the saved
frame pointer?

Solution:

An attacker can overwrite the saved frame pointer so that the program uses the wrong address
as the base pointer after it returns. This can be turned into an exploit, like an off-by-one attack
that builds upon changing the LSB of SFP.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 5

Q1.5 Assume ASLR is enabled. What vulnerability would arise if the instruction jmp *esp exists in
memory?

Solution: An attacker can overwrite the RIP with the address of the jmp *esp instruction.
An attacker could place the shellcode directly above the RIP. This will cause the function to
execute the shellcode when it returns, since ESP will have just popped RIP off of the stack.

There are a few more complications with this specific technique, "ret2esp", since the instruction
jmp *esp is not usually part of a generated binary. You can find more details about it in section
8.3 of the "ASLR Smack & Laugh Reference" by Tilo Müller.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 5 –

https://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Question 2 Robin
Consider the following code snippet:

1 void r ob in (void) {
2 char buf [1 6] ;
3 in t i ;
4
5 i f (f r e a d (& i , s i z eo f (in t) , 1 , s t d i n) != 1)
6 return ;
7
8 i f (f g e t s (buf , s i z eo f (bu f) , s t d i n) == NULL)
9 return ;
10
11 _________
12 }

Assume that:

• There is no compiler padding or additional saved registers.

• The provided line of code in each subpart compiles and runs.

• buf is located at memory address 0xffffd8d8

• Stack canaries are enabled, and all other memory safety defenses are disabled.

• The stack canary is four completely random bytes (no null byte).

For each subpart, mark whether it is possible to leak the value of the stack canary. If you put possible,
provide an input to Line 5 and an input to Line 8 that would leak the canary. If the line is not needed
for the exploit, you must write "Not needed" in the box.

Write your answer in Python syntax.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 5 –

Q2.1 (3 min) Line 11 contains gets(buf);.

Possible

Not possible

Line 5:

Solution: N/A

Line 8:

Solution: N/A

Solution: There’s not much we can do here as an attacker: there’s no way to execute arbitrary
shellcode to leak the canary, because we’d have to bypass the canary somehow; and there’s no
way of leaking the canary value directly as there are no read commands, only write commands.

Q2.2 (5 min) For this subpart only, enter an input that allows you to leak a single character
from memory address 0xffffd8d7. Mark “Not possible” if this is not possible. Line 11
contains printf("%c", buf[i]);.

Possible

Not possible

Line 5:

Solution: '\xff\xff\xff\xff'

Line 8:

Solution: Not needed

Solution: We can set i to -1 to read a value one byte below the buffer. We know that -1 is
0xffffffff in two’s complement, so we just enter that for the integer.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 5 –

Q2.3 (6 min) Line 11 contains printf(buf);.

Possible

Not possible

Line 5:

Solution: Not needed

Line 8:

Solution: '%c%c%c%c%c%x'

Solution: This is just a simple format string attack: We just need to walk our way up the
stack using %c specifiers until we reach canary, at which point we can dump the value of the
canary using a %x.

Q2.4 (6 min) Line 11 contains printf(i);.

Possible

Not possible

Line 5:

Solution: Approach 1: '\xe8\xd8\xff\xff'

Approach 2: '\xd8\xd8\xff\xff'

Line 8:

Solution: Approach 1: Not needed

Approach 2: '%c%c%c%c%c%x'

Solution: The first option is simple: Use the integer as a pointer directly to the stack canary,
which causes it to be leaked since it’s contents will be treated as the format string and directly
printed out (since it’s unlikely for it to contain a format specifier).

The second option is identical to the previous subpart, except for the fact that we’re printing i
instead of buf - as such, we need to set this up such that i is a pointer to the format string
specifier, which resides at buf. We can do this by setting i to this address, so that when it’s
passed into printf, it’s treated identically to passing in buf directly.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 5 –

