Peyrin Kao
Fall 2023

CS 161
Computer Security
Exam Prep 4

Q1 EvanBlock Cipher

(24 points)
EvanBot invents a new block cipher chaining mode called the EBC (EvanBlock Cipher). The encryption diagram is shown below:

Q1.1 (2 points) Write the encryption formula for C_{i}, where $i>1$. You can use E_{K} and D_{K} to denote AES encryption and decryption respectively.
\square
Q1.2 (2 points) Write the decryption formula for P_{i}, where $i>1$. You can use E_{K} and D_{K} to denote AES encryption and decryption respectively.
\square
Q1.3 (4 points) Select all true statements about this scheme.
\square It is IND-CPA secure if we use a random IV for every encryption.
\square It is IND-CPA secure if we use a hard-coded, constant IV for every encryption.
\square Encryption can be parallelized.

Decryption can be parallelized.
\square None of the above

Q1.4 (4 points) Alice has a 4-block message ($P_{1}, P_{2}, P_{3}, P_{4}$). She encrypts this message with the scheme and obtains the ciphertext $C=\left(I V, C_{1}, C_{2}, C_{3}, C_{4}\right)$.

Mallory tampers with this ciphertext by changing the $I V$ to 0 . Bob receives the modified ciphertext $C^{\prime}=\left(0, C_{1}, C_{2}, C_{3}, C_{4}\right)$.

What message will Bob compute when he decrypts the modified ciphertext C^{\prime} ?
X represents some unpredictable "garbage" output of the AES block cipher.
○ $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$
$\bigcirc\left(X, X, P_{3}, P_{4}\right)$
$\bigcirc(X, X, X, X)$
$\bigcirc\left(X, P_{2}, X, P_{4}\right)$
$\bigcirc\left(X, P_{2}, P_{3}, P_{4}\right)$
O None of the above

Alice has a 3-block message $\left(P_{1}, P_{2}, P_{3}\right)$. She encrypts this message with the scheme and obtains the ciphertext $C=\left(I V, C_{1}, C_{2}, C_{3}\right)$.

Mallory tampers with this ciphertext by swapping two blocks of ciphertext. Bob receives the modified ciphertext $C^{\prime}=\left(I V, C_{2}, C_{1}, C_{3}\right)$.

When Bob decrypts the modified ciphertext C^{\prime}, he obtains some modified plaintext $P^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}\right)$. In the next three subparts, write expressions for $P_{1}^{\prime}, P_{2}^{\prime}$, and P_{3}^{\prime}.

Q1.5 (4 points) P_{1}^{\prime} is equal to these values, XORed together. Select as many options as you need. For example, if you think $P_{1}^{\prime}=P_{1} \oplus C_{2}$, then bubble in P_{1} and C_{2}.
$\square \quad P_{1}$
$\square P_{2}$
$\square P_{3}$
$\square I V$
$\square C_{1}$
$\square C_{2}$
$\square C_{3}$

Q1.6 (4 points) P_{2}^{\prime} is equal to these values, XORed together. Select as many options as you need.
$\square P_{1}$
$\square P_{2}$
$\square P_{3}$
$\square I V$
$\square C_{1}$
$\square C_{2}$
$\square C_{3}$

Q1.7 (4 points) P_{3}^{\prime} is equal to these values, XORed together. Select as many options as you need.
$\square \quad P_{1}$
$\square \quad P_{2}$
$\square \quad P_{3}$
$\square I V$
$\square C_{1}$
$\square C_{2}$
$\square C_{3}$

Tony Stark develops a new block cipher mode of operation as follows:

$$
\begin{aligned}
C_{0} & =I V \\
C_{1} & =E_{K}(K) \oplus C_{0} \oplus M_{1} \\
C_{i} & =E_{K}\left(C_{i-1}\right) \oplus M_{i} \\
C & =C_{0}\left\|C_{1}\right\| \cdots \| C_{n}
\end{aligned}
$$

For all parts, assume that $I V$ is randomly generated per encryption unless otherwise stated.
Q2.1 (3 points) Write the decryption formula for M_{i} using AES-GROOT.
\square
Q2.2 (3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?

O It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.

O C_{1} is deterministic. Two ciphertexts will have the same C_{1} if the first blocks of the corresponding plaintexts are the same.

O It is possible to learn the value of K, which can be used to decrypt the ciphertext.

O It is possible to tamper with the value of $I V$ such that the decrypted plaintext block M_{1} is mutated in a predictable manner.

Q2.3 (5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M^{\prime}, C^{\prime}), provide a formula to recover M_{1} in terms of C_{i}, M_{i}^{\prime}, and C_{i}^{\prime} (for any i, e.g. $C_{0}, M_{2}^{\prime}, C_{6}^{\prime}$).

Recall that the $I V$ for some ciphertext C can be referred to as C_{0}.

If AES-GROOT is implemented with a fixed $I V=0^{b}$ (a fixed block of $b 0$'s), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair $\left(M^{\prime}, C^{\prime}\right)$, describe a method to recover plaintext block M_{4}.

Q2.4 (5 points) First, the adversary sends a value $M^{\prime \prime}$ to the challenger. Express your answer in terms of in terms of C_{i}, M_{i}^{\prime}, and C_{i}^{\prime} (for any i).
\square
Q2.5 (5 points) The challenger sends back the encryption of $M^{\prime \prime}$ as $C^{\prime \prime}$. Write an expression for M_{4} in terms of $C_{i}, M_{i}^{\prime}, C_{i}^{\prime}, M_{i}^{\prime \prime}$, and $C_{i}^{\prime \prime}$ (for any i).
\square
Q2.6 (4 points) Which of the following methods of choosing $I V$ allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply.
$\square I V$ is randomly generated per encryption
$\square I V=1^{b}$ (the bit 1 repeated b times)
$\square I V$ is a counter starting at 0 and incremented per encryption
$\square I V$ is a counter starting at a randomly value chosen once during key generation and incremented per encryption
\square None of the above
Q2.7 (2 points) Let C be the encryption of some plaintext M. If Mallory flips with the last bit of C_{3}, which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.
$\square M_{1}$
$\square \quad M_{3}$
\square None of the above
$\square \quad M_{2}$
$\square \quad M_{4}$

Q2.8 (3 points) Which of the following statements are true for AES-GROOT? Select all that apply.
Encryption can be parallelized

Decryption can be parallelized

AES-GROOT requires padding

None of the above

