CS 161 Computer Security

Q1 EvanBlock Cipher

(24 points)

EvanBot invents a new block cipher chaining mode called the EBC (EvanBlock Cipher). The encryption diagram is shown below:

- Q1.1 (2 points) Write the encryption formula for C_i , where i > 1. You can use E_K and D_K to denote AES encryption and decryption respectively.
- Q1.2 (2 points) Write the decryption formula for P_i , where i > 1. You can use E_K and D_K to denote AES encryption and decryption respectively.
- Q1.3 (4 points) Select all true statements about this scheme.
 - □ It is IND-CPA secure if we use a random IV for every encryption.
 - ☐ It is IND-CPA secure if we use a hard-coded, constant IV for every encryption.
 - Encryption can be parallelized.
 - Decryption can be parallelized.
 - $\hfill\square$ None of the above

Q1.4 (4 points) Alice has a 4-block message (P_1, P_2, P_3, P_4) . She encrypts this message with the scheme and obtains the ciphertext $C = (IV, C_1, C_2, C_3, C_4)$.

Mallory tampers with this ciphertext by changing the IV to 0. Bob receives the modified ciphertext $C' = (0, C_1, C_2, C_3, C_4)$.

What message will Bob compute when he decrypts the modified ciphertext C'?

X represents some unpredictable "garbage" output of the AES block cipher.

- $O(P_1, P_2, P_3, P_4)$ $O(X, X, P_3, P_4)$ O(X, X, X, X)
- $\bigcirc (X, P_2, X, P_4) \qquad \bigcirc (X, P_2, P_3, P_4) \qquad \bigcirc \text{ None of the above}$

Alice has a 3-block message (P_1, P_2, P_3) . She encrypts this message with the scheme and obtains the ciphertext $C = (IV, C_1, C_2, C_3)$.

Mallory tampers with this ciphertext by swapping two blocks of ciphertext. Bob receives the modified ciphertext $C' = (IV, C_2, C_1, C_3)$.

When Bob decrypts the modified ciphertext C', he obtains some modified plaintext $P' = (P'_1, P'_2, P'_3)$. In the next three subparts, write expressions for P'_1, P'_2 , and P'_3 .

Q1.5 (4 points) P'_1 is equal to these values, XORed together. Select as many options as you need.

For example, if you think $P'_1 = P_1 \oplus C_2$, then bubble in P_1 and C_2 .

\square P_1	\square P_2	\square P_3	\Box IV	\square C_1	\square C_2	\Box C_3
Q1.6 (4 points) P'_2 is equal to these values, XORed together. Select as many options as you need.						
\square P_1	\square P_2	\square P_3	\Box IV	\square C_1	\square C_2	\square C_3
Q1.7 (4 points) P'_3 is equal to these values, XORed together. Select as many options as you need.						
\square P_1	$\square P_2$	\square P_3	\Box IV	\square C_1	\square C_2	\square C_3

Q2 AES-GROOT

(30 points)

Tony Stark develops a new block cipher mode of operation as follows:

 $C_0 = IV$ $C_1 = E_K(K) \oplus C_0 \oplus M_1$ $C_i = E_K(C_{i-1}) \oplus M_i$ $C = C_0 \|C_1\| \cdots \|C_n$

For all parts, assume that IV is randomly generated per encryption unless otherwise stated.

- Q2.1 (3 points) Write the decryption formula for M_i using AES-GROOT.
- Q2.2 (3 points) AES-GROOT is not IND-CPA secure. Which of the following most accurately describes a way to break IND-CPA for this scheme?
 - O It is possible to compute a deterministic value from each ciphertext that is the same if the first blocks of the corresponding plaintexts are the same.
 - \bigcirc C_1 is deterministic. Two ciphertexts will have the same C_1 if the first blocks of the corresponding plaintexts are the same.
 - **O** It is possible to learn the value of *K*, which can be used to decrypt the ciphertext.
 - \bigcirc It is possible to tamper with the value of IV such that the decrypted plaintext block M_1 is mutated in a predictable manner.
- Q2.3 (5 points) AES-GROOT is vulnerable to plaintext recovery of the first block of plaintext. Given a ciphertext C of an unknown plaintext M and different plaintext-ciphertext pair (M', C'), provide a formula to recover M_1 in terms of C_i , M'_i , and C'_i (for any i, e.g. C_0 , M'_2 , C'_6).

Recall that the IV for some ciphertext C can be referred to as C_0 .

If AES-GROOT is implemented with a fixed $IV = 0^b$ (a fixed block of b 0's), the scheme is vulnerable to full plaintext recovery under the chosen-plaintext attack (CPA) model. Given a ciphertext C of an unknown plaintext and different plaintext-ciphertext pair (M', C'), describe a method to recover plaintext block M_4 .

Q2.4 (5 points) First, the adversary sends a value M'' to the challenger. Express your answer in terms of in terms of C_i , M'_i , and C'_i (for any *i*).

Q2.5 (5 points) The challenger sends back the encryption of M'' as C''. Write an expression for M_4 in terms of C_i , M'_i , C'_i , M''_i , and C''_i (for any *i*).

- Q2.6 (4 points) Which of the following methods of choosing *IV* allows an adversary under CPA to fully recover an arbitrary plaintext (not necessarily using your attack from above)? Select all that apply.
 - \Box *IV* is randomly generated per encryption
 - \Box *IV* = 1^{*b*} (the bit 1 repeated *b* times)
 - \Box *IV* is a counter starting at 0 and incremented per encryption
 - \Box *IV* is a counter starting at a randomly value chosen once during key generation and incremented per encryption
 - □ None of the above
- Q2.7 (2 points) Let C be the encryption of some plaintext M. If Mallory flips with the last bit of C_3 , which of the following blocks of plaintext no longer decrypt to its original value? Select all that apply.
 - $\square M_1 \qquad \square M_3 \qquad \square \text{ None of the above}$
 - \square M_2 \square M_4

Q2.8 (3 points) Which of the following statements are true for AES-GROOT? Select all that apply.

- **Encryption** can be parallelized
- **D**ecryption can be parallelized
- □ AES-GROOT requires padding
- $\hfill\square$ None of the above