
Peyrin Kao
Fall 2023

CS 161
Computer Security Exam Prep 5

Q1 The Red Hood (15 points)
Jason Todd decides to launch a communications channel in order to securely communicate with the
Red Hood Gang over an insecure channel. Jason wants to test different schemes in his attempt to attain
confidentiality and integrity.

Notation:

• M is the message Jason sends to the recipient.

• K1, K2, and K3 are secret keys known to only Jason and the recipient.

• ECB, CBC, and CTR represent block cipher encryption modes for a secure block cipher.

• Assume that CBC and CTR mode are called with randomly generated IVs.

• H is SHA2, a collision-resistant, one-way hash function.

• HMAC is the HMAC construction from lecture.

Decide whether each scheme below provides confidentiality, integrity, both, or neither. For all question
parts, the ciphertext is the value of C; t is a temporary value that is not sent as part of the
ciphertext.

Q1.1 (3 points)

t = CBC(K1,M) C1 = ECB(K2, t) C2 = HMAC(K3, t) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: This is a typical encrypt-then-MAC scheme with a twist: Instead of including the
ciphertext t directly, the ciphertext (but not the MAC) is additionally encrypted with ECB mode.
Even though both the HMAC and ECB leak information about t, t doesn’t leak information
about the plaintext, so the scheme is confidential. The HMAC over t ensures that the input
passed to CBC decryption can’t be tampered with, so the scheme maintains integrity.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 8



Q1.2 (3 points)

t = ECB(K1,M) C1 = CBC(K2, t) C2 = HMAC(K3, t) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Notice that t leaks information about the message because it uses insecure ECB
mode. C2 then leaks information about t, which leaks information about the plaintext, so con-
fidentiality is lost (in this case, C2 is deterministic). However, because the HMAC is computed
over t, which is decryptable to the message, integrity is maintained.

Q1.3 (3 points)

C1 = ECB(K1,M) C2 = H(K2∥C1) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: C1 leaks information aboutM it uses insecure ECB mode, so confidentiality is lost.
C2 does not maintain integrity as it vulnerable to length extension attacks—an attacker could
forge C ′

2 = H(K2∥C1∥x) and C ′
1 = C1∥x, which would be accepted by anyone verifying the

hash.

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 8 –



Q1.4 (3 points) For this subpart only, assume that i a monotonically, increasing counter incremented
per message.

C1 = CTR(K1,M) C2 = HMAC(i,H(C1)) C = (C1, C2)

Clarification issued during exam: Assume that the counter, i, starts at 0.

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Because i is a known value, the key to the HMAC can be predicted, and the scheme
does not maintain integrity. However, since the ciphertext is encrypted with secure CTR
mode, and the insecure HMAC is computed only over the ciphertext, the scheme maintains
confidentiality.

Q1.5 (3 points) For this subpart only, assume that the block size of block cipher is n, the lengths of K1

and K2 are n, the length ofM must be 2n, and the length of the hash produced by H is 2n.

C1 = CBC(K1,K2) C2 = M ⊕ C1 ⊕H(C1) C = (C1, C2)

Confidentiality only

Integrity only

Both confidentiality and integrity

Neither confidentiality nor integrity

Solution: Notice that the attacker already knows the value of C1 since it is sent with the
ciphertext. Because of this, the adversary can just compute H(C1) then C2 ⊕ C1 ⊕H(C1) in
order to recoverM , so the scheme is not confidential. Additionally, there is no MAC, so the
scheme does not have integrity.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 8 –



Q2 PRNGs and Diffie-Hellman Key Exchange (15 points)
Eve is an eavesdropper listening to an insecure channel between Alice and Bob.

1. Alice and Bob each seed a PRNG with different random inputs.

2. Alice and Bob each use their PRNG to generate some pseudorandom output.

3. Eve learns both Alice’s and Bob’s pseudorandom outputs from step 2.

4. Alice, without reseeding, uses her PRNG from the previous steps to generate a, and Bob, without
reseeding, uses his PRNG from the previous steps to generate b.

5. Alice and Bob perform a Diffie-Hellman key exchange using their generated secrets (a and b).
Recall that, in Diffie-Hellman, neither a nor b are directly sent over the channel.

For each choice of PRNG constructions, select the minimum number of PRNGs Eve needs to compromise
(learn the internal state of) in order to learn the Diffie-Hellman shared secret gab mod p. Assume that
Eve always learns the internal state of a PRNG between steps 3 and 4.

Q2.1 (3 points) Alice and Bob both use a PRNG that outputs the same number each time.

(A) Neither PRNG

(B) One PRNG

(C) Both PRNGs

(D) Eve can’t learn the secret

(E)

(F)

Solution: Eve observes the PRNG outputs. Since both PRNGs output the same number each
time, Eve also learns the values of a and b. She can use this to compute the shared secret
gab mod p without compromising any PRNGs.

Q2.2 (3 points) Alice uses a secure, rollback-resistant PRNG. Bob uses a PRNG that outputs the same
number each time.

(G) Neither PRNG

(H) One PRNG

(I) Both PRNGs

(J) Eve can’t learn the secret

(K)

(L)

Solution: Eve observes Bob’s PRNG output and learns the value of b. Alice will send ga mod p
in his half of the exchange. Eve can compute (ga)b mod p to learn the shared secret without
compromising any PRNGs.

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 8 –



Q2.3 (3 points) Alice and Bob both use a secure, rollback-resistant PRNG.

(A) Neither PRNG

(B) One PRNG

(C) Both PRNGs

(D) Eve can’t learn the secret

(E)

(F)

Solution: Eve only needs to compromise one PRNG to learn one of the secrets. For example,
if Eve compromises Alice’s PRNG, she learns a and can compute (gb)a mod p to learn the
shared secret (because Bob sends gb mod p in his half of the exchange). Alternatively, if Eve
compromises Bob’s PRNG, she learns b and can compute (ga)b mod p to learn the shared
secret (because Alice sends ga mod p in her half of the exchange).

For the rest of the question, consider a different sequence of steps:

1. Alice and Bob each seed a PRNG with different random inputs.

2. Alice uses her PRNG from the previous step to generate a, and Bob uses his PRNG from the
previous step to generate b.

3. Alice and Bob perform a Diffie-Hellman key exchange using their generated secrets (a and b).

4. Alice and Bob, without reseeding, each use their PRNG to generate some pseudorandom output.

5. Eve learns both Alice’s and Bob’s pseudorandom outputs from step 4.

As before, assume that Eve always learns the internal state of a PRNG between steps 3 and 4.

Q2.4 (3 points) Alice and Bob both use a secure, but not rollback-resistant PRNG.

(G) Neither PRNG

(H) One PRNG

(I) Both PRNGs

(J) Eve can’t learn the secret

(K)

(L)

Solution: Because there is no rollback resistance, if Eve compromises one PRNG, Eve can
deduce previous PRNG output and learn a secret (either a or b), which is enough to compute
the shared secret (as in the previous part).

Q2.5 (3 points) Alice and Bob both use a secure, rollback-resistant PRNG.

(A) Neither PRNG

(B) One PRNG

(C) Both PRNGs

(D) Eve can’t learn the secret

(E)

(F)

Solution: Even if Eve compromises both PRNGs, because they are rollback-resistant, Eve
cannot deduce the secrets a and b (i.e. previous PRNG output).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 8 –



Q3 Bonsai (10 points)
EvanBot wants to store a file in an untrusted database that the adversary can read and modify.

Before storing the file, EvanBot computes a hash over the contents of the file and stores the hash
separately. When retrieving the file, EvanBot re-computes a hash over the file contents, and, if the
computed hash doesn’t match the stored hash, then EvanBot concludes that the file has been tampered
with.

Clarification during exam: Assume that EvanBot does not know if hashes or files have been modified in
the untrusted datastore.

Q3.1 (4 points) What assumptions are needed for this scheme to guarantee integrity on the file? Select
all that apply.

(A) An attacker cannot tamper with EvanBot’s stored hash

(B) EvanBot has a secret key that nobody else knows

(C) The file is at most 128 bits long

(D) EvanBot uses a secure cryptographic hash

(E) None of the above

(F)

Solution: In order to guarantee integrity on this file, we need two assumptions to hold.

First, the attacker shouldn’t be able to tamper with the stored hash. If they could, then the
attacker could simply replace the file with an arbitrary file of the attacker’s choice, and replace
the original stored hash with a hash over this new file. EvanBot’s check on the file would
succeed.

If EvanBot had a secret key, then EvanBot could change the scheme to use a MAC using the
secret key instead of a hash. However, since this scheme uses a hash, a secret key doesn’t help
us here.

The file being 128 bits long has no relevance to this question.

Finally, the hash must be a secure cryptographic hash. A quick counterexample: if EvanBot
used a hash function that mapped every input to the hash value "1", then the attacker could
choose an input of their choice, and the check on the hash would always succeed.

For the rest of this question, we refer to two databases: a trusted database that an adversary cannot
read or modify, and an untrusted database that an adversary can read and modify.

Assume that H is a secure cryptographic hash function and ∥ denotes concatenation.

EvanBot creates and stores four files, F1, F2, F3, and F4, in the untrusted database. EvanBot also
computes and stores a hash on each file’s contents in the untrusted database:

h1 = H(F1) h2 = H(F2) h3 = H(F3) h4 = H(F4)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 8 –



Then, EvanBot stores hroot = H(h1∥h2∥h3∥h4) in the trusted database.

Q3.2 (3 points) If an attacker modifies F2 stored on the server, will EvanBot be able to detect the
tampering?

(G) Yes, because EvanBot can compute hroot and see it doesn’t match the stored hroot

(H) Yes, because EvanBot can compute h2 and see it doesn’t match the stored h2

(I) No, because the hash doesn’t use a secret key

(J) No, because the attacker can re-compute h2 to be the hash of the modified file

(K)

(L)

Solution:

In this scheme, we have a trusted database that an adversary cannot read or modify. Because we
have this trusted database, it’s possible to ensure integrity through the use of hashes, despite
them not being signed (like MAC’s).

Let’s walk through what happens if an attacker modifies F2. If the attacker modifies this file
and nothing else, then it’s easy for Bot to detect tampering: Bot just has to recompute a hash
over F2 and realize that it doesn’t match h2.

However, an attacker can also modify h2 to be the hash of the malicious file, since it’s in the
untrusted database. Because of this, in order to detect tampering, Bot has to use the only thing
that the attacker doesn’t have access to: hroot, which is stored in the trusted database.

Based on this information: the simplest way to verify the integrity of F2 is to:

1. Recompute a hash over F1, F2, F3, and F4.

2. Recompute hroot using these hashes.

3. Compare this hroot to the stored version of hroot.

If the attacker modifies F2, then Bot will always be able to detect the tampering, since the
check on the root hashes will fail.

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 8 –



Q3.3 (3 points) What is the minimum number of hashes EvanBot needs to compute to verify the integrity
of all four files?

(A) 1

(B) 2

(C) 3

(D) 4

(E) 5

(F) More than 5

Solution:

Because the attacker has the ability to modify all files and hashes in the insecure database, Bot
needs to make sure that the attacker hasn’t modified any single file/hash pair. To do this, Bot
need to follow the procedure discussed in Q3.2’s solution - recompute a hash over each file (4
hashes in total), and recompute the root hash (1 hash in total).

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 8 –




