CS 161 Computer Security

Discussion 6

Question 1 Why do RSA signatures need a hash?

To generate RSA signatures, Alice first creates a standard RSA key pair: (n, e) is the RSA public key and d is the RSA private key, where n is the RSA modulus. For standard RSA signatures, we typically set e to a small prime value such as 3; for this problem, let e=3.

Suppose we used a **simplified** scheme for RSA signatures that skips using a hash function and instead uses message M directly, so the signature S on a message M is $S = M^d \mod n$. In other words, if Alice wants to send a signed message to Bob, she will send (M,S) to Bob where $S = M^d \mod n$ is computed using her private signing key d.

Q1.1	With this simplified RSA scheme, how can Bob verify whether S is a valid signature on message M ? In other words, what equation should he check, to confirm whether M was validly signed by Alice?
Q1.2	Mallory learns that Alice and Bob are using the simplified signature scheme described above and decides to trick Bob into beliving that one of Mallory's messages is from Alice. Explain how Mallory can find an (M, S) pair such that S will be a valid signature on M .
	You should assume that Mallory knows Alice's public key n , but not Alice's private key d . The message M does not have to be chosen in advance and can be gibberish.
Q1.3	Is the attack in Q3.2 possible against the standard RSA signature scheme (the one that includes the cryptographic hash function)? Why or why not?

Question 2 Ra's Al Gamal

Recall the ElGamal scheme from lecture:

- KeyGen() = $(b, B = g^b \mod p)$
- $\operatorname{Enc}(B, M) = (C_1 = g^r \bmod p, C_2 = B^r \times M \bmod p)$
- Q2.1 Is the ciphertext (C_1, C_2) decryptable by someone who knows the private key b? If you answer yes, provide a decryption formula. You may use C_1 , C_2 , b, and any public values.

O Yes	O No

Q2.2 Consider an adversary that can efficiently break the discrete log problem. Can the adversary decrypt the ciphertext (C_1, C_2) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

O Yes	O No	

Q2.3 Consider an adversary that can efficiently break the Diffie-Hellman problem. Can the adversary decrypt the ciphertext (C_1, C_2) without knowledge of the private key? If you answer yes, briefly state how the adversary can decrypt the ciphertext.

O Yes	O No	

Question 3 Dual Asymmetry

Alice wants to send two messages M_1 and M_2 to Bob, but they do not share a symmetric key.

Assume that p is a large prime and that g is a generator mod p, like in ElGamal. Assume that all computations are done modulo p in Scheme A.

Q3.1 Scheme A: Bob publishes his public key $B=g^b$. Alice randomly selects r from 0 to p - 2. Alice then sends the ciphertext $(R,S_1,S_2)=(g^r,M_1\times B^r,M_2\times B^{r+1})$.

Select the correct decryption scheme for M_1 :

 $O R^{-b} \times S_1$

O $B^{-b} \times S_1$

 $\bigcap R^b \times S_1$

O $B^b \times S_1$

Q3.2 Select the correct decryption scheme for M_2 :

 $O B^{-1} \times R^{-b} \times S_2$

O $B^{-1} \times R^b \times S_2$

 $O B \times R^{-b} \times S_2$

O $B^{-1} \times R \times S_2$

Q3.3 Is Scheme A IND-CPA secure? If it is secure, briefly explain why (1 sentence). If it is not secure, briefly describe how you can learn something about the messages.

Page 3 of 4

Clarification during exam: For Scheme A, in the IND-CPA game, assume that a single plaintext is composed of two parts, M_1 and M_2 .

O Secure

O Not secure

Q3.4	Scheme B: Alice randomly chooses two 128-bit keys K_1 and K_2 . Alice encrypts K_1 and K_2 with Bob's public key using RSA (with OAEP padding) then encrypts both messages with AES-CTR using K_1 and K_2 . The ciphertext is RSA(PK _{Bob} , $K_1 K_2$), Enc(K_1 , M_1), Enc(K_2 , M_2).
	Which of the following is required for Scheme B to be IND-CPA secure? Select all that apply.
	\square K_1 and K_2 must be different
	☐ A different IV is used each time in AES-CTR
	$\ \square$ M_1 and M_2 must be different messages
	$\ \square$ M_1 and M_2 must be a multiple of the AES block size
	$\ \square$ M_1 and M_2 must be less than 128 bits long
	☐ None of the above